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Abstract

This paper will explore the subject of quantum cryptography. More specifically, methods of making and
breaking QC will be introduced. In addition to a discussion of the theoretical aspects of QC, the technological
aspects of the subject will also be presented, including contemporary demonstrations and future projects.

Introduction: The development of quantum cryp-
tography began with an exploration into the idea of
mathematically secure cryptosystems, or systems which
allow the secure transfer of data across insecure chan-
nels. Concepts which do not exist in the classical regime
such as quantum entanglement, defined later in the pa-
per, allow one to produce a system in which information
can be transmitted in a secure manner. Key to this dis-
cussion is the idea that quantum cryptography is more
accurately referred to as “quantum key distribution,” or
QKD. The differences between symmetrical and asym-
metrical key distribution will be explained in the context
of information theory. We will then discuss the quantum
mechanical phenomena necessary to construct these sys-
tems, such as entanglement, the no cloning theorem, and
Bell’s inequality.

After an introduction to this background informa-
tion, the paper will essentially be divided into two sec-
tions: the making and breaking of these quantum cryp-
tosystems. The technological aspects of these systems
will be discussed, along with performed and future ex-
periments.

Quantum mechanics background: Perhaps the
most important quantum mechanical phenomenon re-
lated to quantum key distribution is the no-cloning the-
orem. The concept, proven in 1982 by Wootters, Zurek
and Dieks, says that no outside observer can reproduce
perfectly an unknown quantum state without leaving
the result of an observer’s measurement unchanged[1].
Take the unknown state |χ1〉 and some state |φ〉 to
which the state will be copied. If cloning were possi-
ble, some unitary evolution operator U would act such
that U |χ1 ⊗ φ〉 = |χ1 ⊗ χ1〉 . One can then take the in-
ner product X = 〈χ1 ⊗ φ|U †U |χ2 ⊗ φ〉, where |χ2〉 is

some other unknown state. This inner product which is
known to be zero due to the orthogonality of the states,
can be evaluated in two ways:

X = 〈χ1 ⊗ φ|χ2 ⊗ φ〉 = 〈χ1|χ2〉 (1)

X = 〈χ1 ⊗ χ1|χ2 ⊗ χ2〉 = 〈χ1|χ2〉2 (2)

This proves that either |χ1〉 ≡ |χ2〉 or 〈χ1|χ2〉 = 0.
Thus, one can either clone the state |χ1〉 or an orthog-
onal state, but never both [2]. This theorem becomes
extremely important in the discussion of QKD proto-
cols, particularly the BB84 protocol discussed later in
the paper. It implies that an outside observer, whom we
shall call Eve, cannot clone the quantum state without
introducing a perturbation into the system. Although
perfect cloning is impossible, an unknown state can be
cloned approximately to an extent dependent on the sys-
tem configuration[3]. Another proof of the no-cloning
theorem arises out of the impossibility of superluminal
information transfer. One must first introduce the con-
cept of quantum entanglement. For the sake of simpli-
fied introduction, we consider a bipartite system com-
posed of states from separate Hilbert spaces HA,HB,
with product space given by HA⊗HB. The states which
live in this product space can be considered either pure
or entangled; pure states can be written in the form
|ψAB〉 = |ψA〉 ⊗ |ψB〉, whereas entangled states must be
written as a linear combination of other states which
live in the product space. More generally, given an ap-
propriate basis, one can decompose any state living in
HA ⊗HB as

|ψAB〉 =
M∑
i=1

ai |ei〉 ⊗ |fi〉 , (3)
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where M ≤ dimHA, dimHB, and |ei〉 , |fi〉 are orthonor-
mal basis vectors of HA,HB. In the case of the pure
state(and appropriate basis), there is only one Schmidt
coefficient ai, whereas in the entangled state, one
cannot decompose the state with only one Schmidt
coefficient[2]. The most well-known example of an en-

tangled state is the singlet spin state: |10〉−|01〉√
2

. These

states are described as entangled because a measure-
ment on one state is directly correlated to the state of
the other particles. For instance, if one measures an
eigenvalue of 0 for state A of the singlet state, state B
is forced into the state which yields an eigenvalue of 1.
This result leads to a possible violation of the locality re-
quired in a physical theory. Locality implies that if two
events are spatially separated, ie. ds2 > 0, the systems
can not be causally connected. Quantum entanglement
seems to violate this requirement. In reality, violation is
prevented by the fact that entanglement is analogous to
a shared-coin-flip. This coin flip has the same observable
outcomes as entanglement, allowing for no information
transfer.

Assume first that Alice and Bob share an entangled
singlet state. Alice then measures her state, recording
which basis the state was measured in. Afterward, Bob,
who is equipped with a hypothetical unitary cloning op-
erator, makes an unlimited number of copies of his state.
He can then measure these copies in both bases. These
measurements depend only on the speed of the copier;
thus, if the unitary cloning oeprator did exist, one could
transfer information at a superluminal rate[2].

Cryptography background: We now discuss gen-
eral cryptography systems, specifically symmetric and
asymmetric key systems. Although less significant in
the study of QKD, mentioning the concept of the asym-
metric key system will help illustrate the mechanics of
cryptosystems in general. In such a system, two keys
exist: a private and public key. A specific implementa-
tion of this method is the RSA protocol, developed in
1978 at MIT [4]. The private key N, the product of two
large prime numbers p and q, is first chosen. The size
of this key N is chosen to be larger than the message
block desired to be transmitted. Bob, one agent in the
exchange, chooses randomly some integer d which is rel-
atively prime with (p − 1)(q − 1). The inverse modulo
(p − 1)(q − 1) of d, called e, is then computed, after
which p and q are discarded. A public and private key
are then produced from this information, allowing Alice
to encrypt messages while Bob can decrypt them.[4].

This protocol is worth mentioning because it allows
us to analyze the mathematical security of asymmetrical
key systems. The security of the RSA protocol depends

on the computational difficulty in decomposing integers
into their prime factors. Specifically, this problem is be-
lieved to live in the class of NP problems. One algorithm,
Shor’s algorithm, already exists which reduces the com-
plexity of the problem from NP to P. This algorithm
can only be implemented using a quantum computer. A
successful implementation of this algorithm in factoring
large integers will immediately render RSA useless.

On the other hand, symmetric key systems offer a
mathematically secure solution to information transfer.
This method is commonly referred to as the one-time
pad in that it requires a new key during each informa-
tion exchange. If the channel over which the secret key
is distributed can be guaranteed secure, then no method
exists through which the encryption can be broken. The
message to be sent is first encoded in binary. A se-
cret key of size equal to the message block is then pro-
duced randomly. This key is added bitwise modulo 2:
ci = pi ⊕ ki, where ci is the cypher text, pi the plain-
text and ki the secret key, where each of these is split
up into uniform size blocks. The receiver then uses the
secret key which has been distributed over some chan-
nel to decrypt the message through the same process:
pi = ci ⊕ ki = pi ⊕ ki ⊕ ki = pi.[1] The essential compo-
nent of this system is that this secret key can be trans-
mitted over some channel without being determined by
an outside observer. This is the point at which quantum
key distribution comes into play.

BB84 protocol: The first ideal QKD protocol, the
BB84 protocol, is due to Bennett and Brassard(1984).
The protocol requires two bases from which there are
two quantum states each. In practice, this involves two
pairs of orthogonal states are used, horizontal/vertical
and two states at ±45◦. Specifically, the alphabet is
given by |0〉 and |1〉 for the horizontal and vertical po-

larizations, and |+〉 = |0〉+|1〉√
2

and |−〉 = |0〉−|1〉√
2

for the

±45◦ polarizations. The system utilizes two channels,
one quantum and one classical channel. Alice first pro-
duces a qubit which she measures in a random basis.
Afterward, she assigns the measurement a letter in her
“alphabet”: composed of |0〉 or |+〉 for 0 and |1〉 or |−〉
for 1. These qubits are sent to Bob, who then chooses a
basis at random to measure these bits, recording which
basis he used. At the end of this exchange, Alice and
Bob then communicate over a classical channel which
basis they used for each measurement. If they agree,
the data is kept; if not, the data is thrown away. On
average, 50% of the bits will be kept. What is left over
is known as the sifted key. Although it seems as if infor-
mation is lost by this process, one must recall that the
protocol is a key distribution method. No information
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is ever given about the message to be exchanged.
The security of this method arises out of purely quan-

tum mechanical reasons. Imagine an observer known as
Eve who wishes to eavesdrop on Alice and Bob’s ex-
change. If she wishes to know the state of the quan-
tum state which is being sent from Alice to Bob, she
must first observe this state. One of the basic princi-
ples of quantum mechanics states that an observation
will disturb a quantum state, perturbing it away from
its original state. Not only this, but we now know from
the no-cloning theorem that there is no way for Eve to
reproduce this quantum state with full fidelity. Many
attacks on the BB84 protocol revolve around making
approximate copies of states exchanged between Alice
and Bob[2]. Alice and Bob can detect whether or not
an eavesdropper is intercepting their communcations by
comparing statistics on a small set of exchanged data.
More specifically, one refers to the quantum bit error
rate(QBER), simply the probability that Bob measures
the wrong polarization when Alice’s basis is known[3].
For a secure transfer of the key, the QBER must be
smaller than 11%. Generally, the QBER q equals

q0 = pf +
pdnqΣfrtlµ

2
(4)

where pf , pd are related to detector problems, n is the
number of detections, q is the phase related to the
medium, Σ the detector efficiency, fr the pulse repeat
frequency, tl the transmission rate and µ the attenua-
tion for light pulses [10]. The error rate R is measured
on some small subset of the sifted key. If R < q0, then
two techniques are applied: information reconciliation
and privacy amplification. Both of these proccesses are
classical information techniques. First, the sifted key is
divided into blocks of length l. This length l is chosen
according to the error rate R previously measured such
that only one error occurs per subset on average. For
each of these blocks, the parity is calculated: the blocks
are split up into binary strings, after which each string
bi is added bitwise modulo 2, P = b1 ⊕ b2 ⊕ · · · ⊕ bn. If
the parities differ between Alice and Bob, the block is
broken up into smaller subsets until the incorrect bit is
found. After each of these checks, the final bit bn is dis-
carded. At the end of the process, Alice and Bob have
the same data set, ie. errors have been corrected.

After information reconciliation, privacy amplifica-
tion occurs. This process was first mentioned in Ben-
nett, Brassard and Robert(1988) and now has been ex-
tended to classical information theory. From the error
rate R above, the maximal number of bits k known to
Eve is calculated. An arbitary security parameter s is

then chosen that determines the amount of information
that should be reduced from Eve’s knowledge. Alice
and Bob then choose at random n− k− s bits from the
sifted key, where n is the number of bits in the key. The
parities Pi of these subsets become the new sifted key.
By choosing s accordingly and with sufficiently large n,
the amount of information Eve receives can be kept to
a minimum. Eve’s observed information is on the order
of 1/2s. Thus, at the end of the BB84 protocol, Alice
and Bob share an identical secret key which can be used
as a one-time pad. The protocol eliminates the need for
direct transfer of the secret key, which is the only place
the symmetric key system can be compromised.

Quantum key distribution is generally susceptible to
attack in non-ideal situations, particularly with regards
to technological limitations. These hardware limitations
will be discussed in the technological aspects section.
The BB84 protocol is particularly vulnerable at a few
key spots. First, the system requires authentication over
the classical channel when Alice and Bob begin to ex-
change basis data. This process must be bootstrapped
with an existing classical secret key. Thus, if Eve is
already aware of the initial secret key, she can simply
imitate Bob without the need to clone exchanged quan-
tum states. The process through which Alice and Bob
start with an initial secret key and develop stronger se-
cret keys is known as quantum secret growing.

Many new strategies for breaking BB84 focus on
collective and joint attacks [5]. In the collective at-
tack, Eve attaches a probe qubit to each bit that Al-
ice sends, whereupon Eve performs a unitary operation
on the product states. Eve then sends Bob the qubit.
Once the protocol is finished, Eve measures all of the
probe bits together. At this point, a large amount of
information has been collected by Eve over the classi-
cal channel. This is a multibit but uncorrelated attack,
and has been shown to give Eve more information than
individual attacks [11]. Instead, the joint attack works
by entangling all of the states sent from Alice to Bob
first, performing a unitary operation and then sending
the states to Bob. After waiting for the protocol to end,
she then performs her measurement on her entangled
probe states [5]. No matter which attack is used on the
ideal BB84 protocol, one rule always applies: the more
information one gains about the exchange, the more er-
rors are introduced. Thus, Eve must be sure not to in-
crease the QBER past the point of being recognized by
Alice and Bob’s error checking techniques. Regardless
of these advancements, it has been shown that security
is still possible even against the strongest general joint
attacks, discussed in Biham [11].

Other protocols are actively being researched. In ad-
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dition to BB84, in 1992 Charles Bennett discovered that
only two nonorthogonal states are necessary for quantum
cryptography. Although the states are theoretically in-
compatible, they are more easily distinguishable at the
cost of some loss [4]. The quantum channel must be
monitored for attenuation to ensure that no eavesdrop-
per is on the line. In addition, a protocol exists based
around the EPR paradox. The quantum channel be-
tween A and B is eliminated and replaced with a source
which sends entangled states to A and B. The source
can emit the states in the same basis chosen in the same
manner as in the BB84 protocol, after which the protocol
continues as before. Instead of checking the QBER, Al-
ice and Bob can now test Bell’s inequalities, which Ekert
argues demonstrates security [6]. These inequalities test
the extent to which the states are entangled, rather than
being the linear combination of product states which are
not entangled.

Technological aspects: The original demonstra-
tion of QKD was performed in Bennett’s lab at IBM
in 1992 at a distance of 30 cm [4]. Contemporary ex-
periments involve two regimes: transmission of quan-
tum information through free space or over optical fiber.
Transmission of quantum information through free space
utilizes many existing technologies, particularly efficient
photon counters at frequencies of approximately 770 nm.
Photon polarization is largely unaffected by the atmo-
sphere at this frequency. An advantage of the free space
technique is that signal attenuation is much smaller than
that of the optical fiber. However, atmospheric condi-
tions can affect transmission, particularly on days with-
out clear weather. Specifically, atmospheric turbulences
due to temperature gradients can introduce jitter into
the signal on the order of 0.1 seconds. Using reference
pulses compensates for these effects [7]. In the experi-
ment performed by Hughes, between 100 and 2000 sifted
key bits were transferred per one second quantum trans-
mission both during the day and at night [7].

The other regime, transmitting quantum information
over optical fibers, reduces the noise associated with free
space transfers. Modern optical fibers have attenutation
levels as low as 0.35 dB/km at 1310 nm and 0.2 dB/km
at 1550 nm [4]. Singlemode optical fibers are particu-
larly fit for transferring single polarized photons. It is
well-known that degenerate polarization modes exist in
optical fibers with perfect cylindrical symmetry; prob-
lems arise in non-ideal fibers which lack this symmetry.
In this case, the polarization of a photon oscillates as it
passes down the fiber. This is a major problem when one
considers how essential photon polarization is in proto-
cols such as BB84 when establishing a set of nonorthog-

onal bases.
For optical quantum cryptosystems, methods for

producing and detecting single quanta are under intense
research. Ideally, a two-level quantum system would ex-
ist which only produces one photon at a time. Pho-
ton emitters which produce more than one photon dur-
ing one event introduce vulnerabilities into the system.
Multiple photon production can be exploited through
beam-splitting techniques [8]. Promising research has
been done into single nitrogen-vacancy centers, lumines-
cent defects in diamond. These centers have a high ra-
diative quantum efficiency at room temperature plus a
short decay time. Excitation by a 532 nm laser beam
causes the diamond to fluoresce at 700 nm, exhibiting
photon anti-bunching at room temperature [9].

Conclusion and Outlook: The current state of
quantum cryptography is at the frontier of applied and
theoretical physics. While much active research has been
committed to the implementation of QKD protocols, the
limiting factors are largely technological. Innovations
such as the single-photon laser and detector will result
in nearly perfectly secure QKD systems.
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